Adaptive fusion of K-means region growing with optimized deep features for enhanced LSTM-based multi-disease classification of plant leaves

نویسندگان

چکیده

The manual process of plant leaves disease detection takes more time to perform. To achieve successful classification results, a flawless feature extraction is required for model. Aiming at the localization diseased-plant leaves, this paper performs complex tasks like segmentation, and multi-disease using ‘improved extraction, classification’ models. Here, Adaptive Fusion K-Means Region Growing (AFKMRG) accomplishes abnormality segmentation leaves. extracted features are subjected Enhanced Long short-term memory (LSTM) performing classification. classification, improved by Fitness Sorted Jaya-Forest Optimization Algorithm (FSJ-FOA). From empirical accuracy precision designed method attains 98.35% 98.40% all kinds Results show that provides elevated performance with diverse metrics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimized data fusion for K-means Laplacian clustering

MOTIVATION We propose a novel algorithm to combine multiple kernels and Laplacians for clustering analysis. The new algorithm is formulated on a Rayleigh quotient objective function and is solved as a bi-level alternating minimization procedure. Using the proposed algorithm, the coefficients of kernels and Laplacians can be optimized automatically. RESULTS Three variants of the algorithm are ...

متن کامل

application of upfc based on svpwm for power quality improvement

در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...

15 صفحه اول

Classification of encrypted traffic for applications based on statistical features

Traffic classification plays an important role in many aspects of network management such as identifying type of the transferred data, detection of malware applications, applying policies to restrict network accesses and so on. Basic methods in this field were using some obvious traffic features like port number and protocol type to classify the traffic type. However, recent changes in applicat...

متن کامل

Deep LSTM based Feature Mapping for Query Classification

Traditional convolutional neural network (CNN) based query classification uses linear feature mapping in its convolution operation. The recurrent neural network (RNN), differs from a CNN in representing word sequence with their ordering information kept explicitly. We propose using a deep long-short-term-memory (DLSTM) based feature mapping to learn feature representation for CNN. The DLSTM, wh...

متن کامل

Plant Classification in Images of Natural Scenes Using Segmentations Fusion

This paper presents a novel approach to automatic classifying and identifying of tree leaves using image segmentation fusion. With the development of mobile devices and remote access, automatic plant identification in images taken in natural scenes has received much attention. Image segmentation plays a key role in most plant identification methods, especially in complex background images. Wher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geocarto International

سال: 2023

ISSN: ['1010-6049', '1752-0762']

DOI: https://doi.org/10.1080/10106049.2023.2178520